Posts

Showing posts from 2017

AutoML for large scale image classification and object detection

Image
AutoML for large scale image classification and object detection A few months ago, we introduced our  AutoML  project, an approach that automates the design of machine learning models. While we found that AutoML can design small neural networks that perform on par with neural networks designed by human experts, these results were constrained to small academic datasets like CIFAR-10, and Penn Treebank. We became curious how this method would perform on larger more challenging datasets, such as  ImageNet  image classification and COCO object detection. Many state-of-the-art machine learning architectures have been invented by humans to tackle these datasets in academic competitions. In  Learning Transferable Architectures for Scalable Image Recognition , we apply AutoML to the ImageNet image classification and  COCO  object detection dataset -- two of the most respected large scale academic datasets in computer vision. These two datasets prove a grea...

B2B applications of AI in marketing: Two use cases that matter

Image
B2B applications of AI in marketing: Two use cases that matter Columnist Daniel Faggella predicts the ways artificial intelligence will shape the future of B2B and takes a look at two current examples of how AI is being used in marketing to improve processes and services. Daniel Faggella  on July 10, 2017 at 10:05 am MORE Artificial intelligence and machine learning are proving to be very useful in just about every business function in the enterprise, and marketing is no exception. AI is already impacting marketing, and it’s going to further shape the future of how business is done and how relationships are forged between companies and their clients. Most AI in marketing applications are focused on B2C use cases, many of which we’re very familiar with as consumers ourselves. Most of us know that the ads that show up on Facebook, on banners or on Google are targeting individual users directly based on past behavior, demographic data, location information and mor...

The Google Brain Team’s Approach to Research

Image
The Google Brain Team’s Approach to Research About a year ago, the  Google Brain team  first shared our mission “Make machines intelligent. Improve people’s lives.” In that time, we’ve shared updates on our work to infuse machine learning across Google products that hundreds of millions of users access every day, including  Translate ,  Maps , and more. Today, I’d like to share more about how we approach this mission both through advancement in the fundamental theory and understanding of machine learning and through research in the service of the product. Five years ago, our colleagues Alfred Spector, Peter Norvig, and Slav Petrov published a blog post and  paper  explaining Google’s hybrid approach to research, an approach that always allowed for varied balances between curiosity-driven and application-driven research. The biggest challenges in machine learning that the Brain team is focused on require the broadest exploration of new ideas, which...

FAQ: All about the Google RankBrain algorithm

Image
FAQ: All about the Google RankBrain algorithm Google's using a machine learning technology called RankBrain to help deliver its search results. Here's what's we know about it. MORE Google uses a machine-learning artificial intelligence system called “RankBrain” to help sort through its search results. Wondering how that works and fits in with Google’s overall ranking system? Here’s what we know about RankBrain. The information covered below comes from three original sources and has been updated over time, with notes where updates have happened. Here are those sources: First is the  Bloomberg story  that broke the news about RankBrain . Second, additional information that Google has now provided directly to Search Engine Land. Third, our own knowledge and best assumptions in places where Google isn’t providing answers. We’ll make clear where these sources are used, when deemed necessary, apart from general background information. What is ...

An experiment in trying to predict Google rankings

Image
An experiment in trying to predict Google rankings In late 2015, JR Oakes and his colleagues undertook an experiment to attempt to predict Google ranking for a given webpage using machine learning. What follows are their findings, which they wanted to share with the SEO community Machine learning is quickly becoming an indispensable tool for many large companies. Everyone has, for sure, heard about Google’s AI algorithm beating the World Champion in Go, as well as technologies like  RankBrain , but machine learning does not have to be a mystical subject relegated to the domain of math researchers. There are many approachable libraries and technologies that show promise of being very useful to any industry that has data to play with. Machine learning also has the ability to turn traditional website marketing and SEO on its head. Late last year, my colleagues and I (rather naively) began an experiment in which we threw several popular machine learn...